DATABLOCKSIZE – V2R4.1

Data transfer should be optimal at a datablocksize of 128K but over a period of time inserts will cause the rows in a given table to migrate to smaller datablocks. In an ideal environment deletes would equal inserts and a tables distribution over a range of datablock sizes would stabilize. As rows are deleted their datablocks are released and the table attempts to maintain it’s datablocksize setting. This is a typical operational scenario, which is why we claim that Teradata RDBMS doesn’t need reorgs. The worst case scenario would be a customer that was building a new history table week by week with no deletes. In a more typical example there might be about 10% more inserts than deletes due to business growth. Performance degrades very gradually. To maintain peak performance, it may be desirable to make adjustments to certain tables periodically. (e.g. every 3-4 months.)
The 1st step in this process is to enable V2R4.1 larger datablocksize. This feature must be enabled via the Database Window. You can access this by starting a CNSTERM 6 session (as root) on one of the nodes and getting into DBSCONTROL. From there we want to modify the FILESYS PermDBSize parameter to = 127.

Input Supervisor Command:

start dbscontrol 1

Started 'dbscontrol' in window 1

 at Mon Mar 11 10:25:53 2002

From Window 1 we want to display, modify, and write the new FILESYS parameter.

Enter a command, HELP, or QUIT:

d f (display the filesys parameters)

DBS Control Record - File System Fields:

 1. FreeSpacePercent = 0%

 2. MiniCylPackLowCylProd = 10 (free cylinders)

 3. PermDBSize = 63 (sectors)

 4. JournalDBSize = 12 (sectors)

 5. DefragLowCylProd = 0 (free cylinders)

 6. PermDBAllocUnit = 1 (sectors)

 7. WriteDBsToDisk = FALSE

 8. Cylinders Saved for PERM = 10 (cylinders)

Enter a command, HELP, or QUIT:

m f 3=127 (modify filesys parameter 3 to 127)

The PermDBSize field has been modified from 64 to 127.

NOTE: This change will become effective after the DBS Control Record

 has been written.

Enter a command, HELP, or QUIT:

w f (write the new filesys parameters)

Locking the DBS Control GDO...

Updating the DBS Control GDO...

We can then exit DBSCONTROL from Window 1.

Enter a command, HELP, or QUIT:

quit

Exiting DBSControl...

The 2nd step in this process is to monitor the status of your larger tables with the ‘showblocks’ cmd of the ferret utility. You can get to this utility by running CNSTERM 6 in a telnet session (as root) on one of your nodes. If you run the cmd without any parms the distribution over various datablocksizes for all tables will be displayed. The following example is the output for one table. From within ferret you can issue the cmd “tableid ‘tablename’” to get the tableid for a given table. You can then set the Ferret Scope to that one table. This happens to be a 95gB, 1.1bil row table whose average datablocksize is 38.5K. A sector is 512 bytes so 77 sectors is 38.5K. Only 17% of the rows reside in 64K datablocks. There are no rows in datablocks larger than 64K because the feature was not enabled at conversion time.

Input Supervisor Command:

start ferret 1

Started 'ferret' in window 1

 at Mon Mar 11 10:51:17 2002

Ferret ==>

> tableid "dtmmip02.tmmi083_st_style_w"

tableid "dtmmip02.tmmi083_st_style_w"

 The table id for DTMMIP02.TMMI083_ST_STYLE_W is

42 24621 0 (0x002A 0x602D 0x0000)

Ferret ==>

> scope table 42 24621 0

scope table 42 24621 0

The SCOPE has been set

Ferret ==>

> showblocks
showblocks

Showblocks has been started on all AMP vprocs in the SCOPE.

Type 'ABORT' to stop the command before completion

>

+------------+--+-------------------+------------+------------+

| | Distribution of data block sizes | Data block | Total | Total |

| | (by range of number of sectors) | size statistics | Number | Number |

|+------------+-----+----+--+-----+----+----+----+-----+----+-----+-----+-----+-----+----+-----+ (sectors) | of | of |

| Table ID | 1- | 2- | 4-| 8- | 16-| 32- | 48-| 64- | 80- |96- |112- |128-|160-|192-|224-|-----+-----+------+ Data | Cylinders |

| | 1 | 3 | 7 | 15 | 31 | 47 | 63 | 79 | 95|111 |127 |159 |191 |223 |255 | Min | Avg | Max| Blocks | |

+-------------+----+----+----+----+----+----+----+----+----+-----+------+----+------+----+-----+-----+------+------+-----------+-------------+

| 42 24621 |1%| 1%| 1%| 3%| 4%| 5%| 6%|34%|14%|14%|17% | | | | | 1 | 77 | 127 | 2465294| 69218 |

+-------------+----+----+----+----+----+----+----+----+----+----+-------+----+------+----+------+-----+------+-----+------------+-------------+

For step 3 we would reorg this table with 2 ‘ALTER’ cmds:

1) ALTER TABLE DTMMIP02.TMMI083_ST_STYLE_W, DATABLOCKSIZE = 120 KBYTES IMMEDIATE;

This causes the table to immediately pack the rows into 120K datablocks. This table took ~20 minutes. If you had the data you could drop, fastload, and rebuild your indexes, but the ALTER is faster.

2) ALTER TABLE DTMMIP02.TMMI083_ST_STYLE_W, DATABLOCKSIZE = 127 KBYTES;

This modifies the tables datablocksize attribute to 128K without any repacking. The 8K size difference is arbitrary, but allows room for some insert activity. If the ratio of inserts to deletes was lower you could allow for less room by initially packing to 122K or 124K.

The ‘showblocks’ cmd now displays a much better distribution:

+------------+--+----------------------+-------------+------------+

| | Distribution of data block sizes | Data block | Total | Total |

| | (by range of number of sectors) | size statistic s | Number | Number |

+------------+---+---+---+---+----+---+----+----+----+-----+-----+----+-----+------------+ (sectors) | of | of |

| Table ID | 1-| 2- | 4-| 8-| 16-| 32-| 48-| 64- | 80-|96 - |112-|128-|160-|192-|224- |------+------+------+ Data | Cylinders |

| | 1 | 3 | 7 | 15 | 31 | 47 | 63 | 79 | 95 |111 |127 |159 |191 |223 |255 | Min | Avg | Max | Blocks | |

+------------+---+---+---+----+---+----+---+-----+----+-----+-----+----+-----+-----+-----+-----+------+------+-------------+-------------+

| 42 24621 | | | | | | | | | | 1%| 1%| 5%| 3%| 3%| 87%| 1 | 227 | 254 | 819851 | 71128 |

+------------+---+---+---+----+---+----+---+-----+----+-----+-----+----+-----+-----+------+----+------+-------+-----------+--------------+

The final step in this process would be to monitor the larger tables to determine how long it takes them to migrate to a smaller average datablocksize. You could then set up a production job to perform the ‘ALTER’ cmds.

